Application of nonlinear optical microscopy for imaging skin.
نویسندگان
چکیده
Recent advances in the use of nonlinear optical microscopy (NLOM) in skin microscopy are presented. Nonresonant spectroscopies including second harmonic generation, coherent anti-Stokes Raman and two-photon absorption are described and applications to problems in skin biology are detailed. These nonlinear techniques have several advantages over traditional microscopy methods that rely on one-photon excitation: intrinsic 3D imaging with <1 microm spatial resolution, decreased photodamage to tissue samples and penetration depths up to 1,000 microm with the use of near-infrared lasers. Thanks to these advantages, nonlinear optical spectroscopy has become a powerful tool to study the physical and biochemical properties of the skin. Structural information can be obtained using the response of endogenous chemical species in the skin, such as collagen or lipids, indicating that optical biopsy may replace current invasive, time-consuming traditional histology methods. Insertion of specific probe molecules into the skin provides the opportunity to monitor specific biochemical processes such as skin transport, molecular penetration, barrier homeostasis and ultraviolet radiation-induced reactive oxygen species generation. While the field is quite new, it seems likely that the use of NLOM to probe structure and biochemistry of live skin samples will only continue to grow.
منابع مشابه
Imaging techniques in dermatology
Since the discovery of X-rays, the use of imaging technology has continued to play an important role in medicine. Technological advancements have led to the development of various imaging modalities, most of which have been used to image organs deep within the human body. More recently, attention has focused on the application of imaging technology for evaluation of the skin. A variety of techn...
متن کاملNonlinear Optical Properties of Rigid Polyurethane Foam/SiO2 Nanocomposite
Polyurethane closed cell (PUCC)/SiO2 nanocomposites have been prepared by using in situ polymerization approach. The third-order optical nonlinearities of PUCC/SiO2 nanocomposites, dissolved in DMF are characterized by Z-scan technique at the measurement wavelength of 532 nm. The nonlinear refractive (NLR) indices and nonlinear absorption (NLA) coefficients of samples were calculated from close...
متن کاملSynthesis and characterization of CdO/GrO nanolayer for in vivo imaging
Objective(s): Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity. Nanoparticles have enabled significant advances in pre-clinical cancer research as drug delivery vectors. Inorganic nanoparticles such as CdO/GrO nanoparticles have novel optical properties that can be used to optimize the signal-to-background ratio. This paper rep...
متن کاملNonlinear absorption microscopy.
For the past two decades, nonlinear microscopy has been developed to overcome the scattering problem in thick tissue imaging. Owing to its increased imaging depth and high spatial resolution, nonlinear microscopy becomes the first choice for imaging living tissues. The use of nonlinear optical effects not only facilitates the signal originating from an extremely small volume defined by light fo...
متن کاملCharacterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport
Widespread applications of ZnO nanoparticles (NP) in sun-blocking cosmetic products have raised safety concerns related to their potential transdermal penetration and resultant cytotoxicity. Nonlinear optical microscopy provides means for high-contrast imaging of ZnO NPs lending in vitro and in vivo assessment of the nanoparticle uptake in skin, provided their nonlinear optical properties are c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Photochemistry and photobiology
دوره 85 1 شماره
صفحات -
تاریخ انتشار 2009